914 nm LD 端面抽运 Nd:YVO₄ 100 kHz 皮秒再生放大器

陈 檬 常 亮 杨 超 陈立元 李 港 (北京工业大学激光工程研究院,北京 100124)

摘要 采用 Nd:YVO4晶体带内抽运波长 914 nm,降低激光二极管(LD)连续抽运时晶体的热负荷和端面热应力, 提高高重复频率 Nd:YVO4 皮秒再生放大器输出性能。研究分析了普克尔盒加压脉宽对工作频率为 100 kHz 的 Nd:YVO4 再生放大器输出脉冲稳定性的影响,在吸收 914 nm 抽运功率为 68 W,通过控制普克尔盒加压脉宽,实现 了对单脉冲能量为 1 nJ、脉宽为 5.7 ps、频率为 42.7 MHz 的全固态 Nd:YVO4 半导体可饱和吸收镜(SESAM)锁模 种子激光脉冲的稳定的 100 kHz 皮秒激光再生放大,输出平均功率为 21.2 W。 关键词 激光技术;全固态激光器;再生放大技术;皮秒脉冲;Nd:YVO4晶体; 914 nm 波长

中图分类号 O436 文献标识码 A doi: 10.3788/CJL201340.0602010

100 kHz Nd: YVO₄ Picosecond Regenerative Amplifier End-Pumped by 914 nm Laser Diode

Chen Meng Chang Liang Yang Chao Chen Liyuan Li Gang

(Institute of Laser Engineering, Beijing University of Technology, Beijing 100124, China)

Abstract 914 nm wavelength in-band pumping of Nd: YVO_4 reduces crystal thermal load and end-surface thermal stress, then the performance of Nd: YVO_4 regenerative amplifier is enhanced at high repetition rate. The influence of high-voltage-duration applied to Pockel-cell on Nd: YVO_4 regenerative amplifier with output pulse stability of 100 kHz is investigated in detail. When 68 W pumping power at 914 nm center wavelength is absorbed by the Nd: YVO_4 crystal and appropriated high-voltage-duration is applied to Pockel-cell, the Nd: YVO_4 regenerative amplifier that produces stable 21.2 W average power at 100 kHz repetition rate is seeded by a low power of 1 nJ and 5.7 ps duration semiconductor saturable absorber mirror (SESAM) mode-locked Nd: YVO_4 laser with repetition rate of 42.7 MHz.

Key words laser technique; all-solid-state laser; regeneration amplifier; pico-second pulse; Nd: YVO₄ crystal; 914 nm wavelength

OCIS codes 140.0140; 140.3480; 140.3280; 140.7090

1 引 言

Nd: YVO4 是目前高重复频率、高平均功率 1064 nm 皮秒激光再生放大器增益晶体的首选激光 晶体,然而其相对低的断裂阈值^[1]限制了 Nd: YVO4 晶体抽运功率的提高。以质量分数为 0.5% 的 Nd: YVO4为例,采用中心波长 808 nm 的半导体激 光器端面抽运,在抽运光斑直径为 0.8 mm 时,可承 受的最大注入抽运光功率为 36 W。为了解决这个 问题,通常采用以下方法:端面键合未掺杂端 帽^[2,3]、双端抽运结构^[4]、降低掺杂浓度^[5]、采用吸收 系数较低的波长抽运^[6]等。其中采用低吸收系数波 长抽运一方面可降低 Nd: YVO4 端面热应力提高注 入的抽运功率,另一方面可提高量子效率,降低整个 晶体的热负荷。

本文利用最大输出功率为 95 W、中心波长为 914 nm 的光纤耦合半导体激光器作为 Nd: YVO₄ 晶 体的抽运源,搭建了 100 kHz Nd: YVO₄ 皮秒再生 放大器,详细研究了普克尔盒加压脉宽对百千赫兹 Nd: YVO₄皮秒再生放大器输出脉冲稳定性的影响, 实现了稳定的 100 kHz、单脉冲能量 212 μJ 的 914 nm抽运的 Nd: YVO₄皮秒再生放大输出。

基金项目:国家自然科学基金(61144007)资助课题。

作者简介:陈 檬(1963-),女,副研究员,主要从事全固态纳秒、皮秒、倍频激光器件及技术等方面的研究。 E-mail: chenmeng@ bjut. edu. cn

收稿日期: 2013-02-28; 收到修改稿日期: 2013-04-10

2 实验装置

再生放大器实验光路示意图如图 1 所示,其中激 光工作物质为掺杂原子数分数为 0.5%、沿 a 轴切割 的 Nd: YVO4 晶体,尺寸为 4 mm×4 mm×30 mm;抽 运光为 914 nm 光纤耦合半导体激光器,最大输出 功率为 95 W,光纤芯径为 400 μ m; L₁、L₂ 为 1:3倍 准直聚焦透镜,激光晶体内抽运光焦斑处光斑直径 约为 1200 μ m。腔镜 M₃ 和 M₄ 为弯月镜,用来补偿 在高抽运功率下的热透镜效应,凹面镀对 914 nm 的增透膜,凸面镀对 1064 nm 高反和 914 nm 高透 的膜系;其他腔镜 M₁、M₂、M₅ 和 M₆ 为对 1064 nm 凹面全反镜;再生放大腔长为 1.89 m,对应激光在 谐振腔内往返一周的时间为 12.6 ns; TFP_{1~4}为薄 膜偏振片;种子光源为半导体抽运的 Nd: YVO4 半 导体可饱和吸收镜(SESAM)锁模激光器,波长为 1064 nm,输出功率为100 mW,重复频率为42.8 MHz, 脉冲宽度为5.7 ps。水平偏振种子光由反射镜 M₈、 M₉ 经法拉第光隔离器系统[包括 TFP₃、1/2 波片、 法拉第旋转器(FR)]、偏振片 TFP₂ 导入再生放大 腔;往返经过 1/4 波片和β相偏硼酸钡晶体普克尔 盒(BBO-PC),偏振态旋转90°后被 TFP₂ 反射到再 生放大腔的其余光学元件上。功率计 PM₂ 用来测 量未被激光晶体吸收的抽运光,功率计 PM₁ 用来测 量再生放大输出激光功率,快速光电探测器 PIN₁ (带宽为12 GHz)用来探测输出的光脉冲波形,PIN₂ (带宽为7.5 GHz)探测腔内种子光成长过程。当腔 内激光晶体吸收了 67.6 W、914 nm 抽运光时,再生放 大腔有最大的输出,输出平均功率为25 W。

图 1 100 kHz、914 nm 端面抽运 Nd:YVO4皮秒激光再生放大光路图 Fig. 1 Optical layout of 914 nm LD end-pumped Nd:YVO4 picosecond regenerative amplifier with 100 kHz

3 实验结果分析

种子光在再生放大腔内经过多次往返,增益达 到最大,此时将放大后的种子光导出(参见图 2)。

- 图 2 再生放大成长过程内腔波形(ch2)和单脉冲输出 波形(ch1)
- Fig. 2 Waveform of intra-cavity (ch2) and single pulse output (ch1) of regenerative amplifier

普克尔盒加压脉宽 τ_{GL}对应种子光在腔内的往返次数,图 3 为 τ_{GL}=88.2 ns 时示波器探测的 100 kHz 触发脉冲序列和再生放大器输出的光脉冲序列。采用的示波器为 Tektronix DPO 70604C 型数字荧光示

图 3 100 kHz 再生放大触发脉冲序列和激光输出脉冲序列 Fig. 3 Waveform of trigger pulses train and laser pulse train of 100 kHz regenerative amplifier 波器,带宽为6GHz,采样率为25GS/s。

图 3 表明此时再生放大器输出的光脉冲存在一 高一低两个能量值,这就是所报道的倍周期现 象^[7~11]。为了获得稳定的 100 kHz,Nd:YVO4 再生 放大器输出,进一步研究了普克尔盒加压脉宽 τ_{GL}对 输出脉冲稳定性的影响。实验中以 12.6 ns 为步长 改变加压脉宽,发现当 $\tau_{GL} \leq 63.0$ ns 时,再生放大输 出稳定的单一能量脉冲[如图 4(a)和(b)];当 63.0 ns $<\tau_{GL} < 100.8$ ns时,输出脉冲存在一高一低 两个能量值,并且能量差值随加压脉宽增加而增大 [如图 4(c)和(e)所示];进一步增加普克尔盒加压 脉宽,输出脉冲能量无规律[如图 4(f)和(h)所示]。

图 4 再生放大输出激光脉冲序列稳定性波形

Fig. 4 Stability waveform of regenerative amplifier output pulse train

0602010-3

测量了 Nd: YVO4 再生放大器在 100 kHz 重频下 平均输出功率随普克尔盒加压脉宽的变化曲线,如图 5 所示,其中圆点表明此时输出稳定的单一能量脉 冲,三角形则表明此时输出的激光脉冲能量不稳定。 在最大输出功率 25 W 处,对应 _{7GL} = 100.8 ns,此时 输出脉冲能量值不稳定;输出单一稳定脉冲对应的 最大输出功率为 21.2 W。

Fig. 5 Output power of Nd: YVO4 regenerative amplifier versus gate length at 100 kHz repetition rate

4 结 论

利用 914 nm 波长抽运 Nd: YVO4 晶体,降低了 晶体端面热应力,实现了掺杂原子数分数为 0.5% 的单端注入抽运功率 95 W;根据热应力分析,还可 将抽运功率提高到 150 W。

在低功率皮秒种子注入下,通过控制普克尔盒 加压脉宽,获得了稳定的 100 kHz Nd:YVO4 皮秒 激光再生放大输出;实现了 914 nm 抽运的 100 kHz Nd:YVO4 皮秒再生放大输出,输出平均功率为 21.2 W,光-光转换效率为 31.4%,单脉冲能量为 212 μJ。

100 kHz Nd: YVO4皮秒再生放大器稳定工作是 在减小普克尔盒加压脉宽,减少种子光在腔内往返次 数,即牺牲腔内增益的条件下获得的,因此100kHz 的重复频率不是 Nd:YVO4 再生放大器最佳的工作频 率。为避免出现倍周期等输出光脉冲能量不稳定现 象,Nd:YVO4 再生放大器工作频率需大于 300 kHz, 相关研究将在后续文章中报道。

参考文献

- 1 X. Peng, A. Asundi, Y. Chen. Study of the mechanical properties of Nd: YVO₄ crystal by use of laser interferometry and finite-element analysis[J]. Appl. Opt., 2001, 40(9): 1396~1403
- 2 Y. T. Chang, Y. P. Huang, K. W. Su. Comparison of thermal lensing effects between single-end and double-end diffusion-bonded Nd :YVO₄ crystals for ⁴F_{3/2}→ ⁴I_{11/2} and ⁴F_{3/2}→ ⁴I_{13/2} transitions[J]. Opt. Express, 2008, 16(25); 21155~21160
- 3 Zhao Zhigang, Dong Yantao, Pan Sunqiang et al., 50 W class doubleend-pumped Nd: YVO₄ TEM₀₀ mode solid state laser oscillator[J]. *Chinese J. Lasers*, 2011, **38**(9): 0902001

赵智刚,董延涛,潘孙强等.50W量级双端抽运Nd:YVO4基模 固体激光振荡器[J].中国激光,2011,38(9):0902001

- 4 X. Ya, Q. Liu, M. Gong. High-repetition-rate high-beam-quality 43
 W ultraviolet laser with extra-cavity third harmonic generation [J].
 Appl. Phys. B, 2009, 95(2): 323~328
- 5 Zhang Hongrui, Gao Mingyi, Zheng Yi *a al.*. Performance of Nd: YVO4 laser with lower Nd³⁺ dopped concentration [J]. *Laser & Infrared*, 2003, **33**(2): 115~117 张红瑞,高明义,郑 义等. 低掺杂浓度 Nd: YVO4激光器的输出 特性研究[J]. 激光与红外, 2003, **33**(2): 115~117
- 6 Ai Qingkang, Chang Liang, Chen Meng et al.. Thermal analysis of Nd: YVO4 pumped by 808 nm and 888 nm[J]. Chinese J. Lasers, 2011, 38(4): 0402001
 艾庆康,常 亮,陈 檬等. 808 nm 与 888 nm 抽运 Nd: YVO4热效

又庆康,帛 壳,陈 稼 寺. 508 nm 马 888 nm 抽运 № 1 VO4 然效 应分析[J]. 中国激光, 2011, **38**(4): 0402001

- 7 J. Dorring, A. Killi, U. Morgner. Period doubling and deterministic chaos in continuously pumped regenerative amplifiers [J]. Opt. Express, 2004, 12(8): 1759~1768
- 8 M. Grishin, V. Gulbinas, A. Michailovas. Dynamica of high repetition rate regenerative amplifiers [J]. Opt. Express, 2007, 15(5): 9434~9443
- 9 David A. Clubley, Angus S. Bell, Graham Friel. High average power Nd: YVO4 based pico-second regenerative amplifier[C]. SPIE, 2008, 6871: 68711D
- 10 M. Luhrmann, F. Harth, C. Theobald. High average power Nd: YVO₄ regenerative amplifier seeded by a gain switched diode laser [C]. SPIE, 2011, **7912**: 791210
- 11 M. Grishin, V. Gulbinas, A. Michailovas. Bifurcation suppression for stability improvement in Nd: YVO₄ regenerative amplifier[J]. *Opt. Express*, 2009, **17**(18): 15700~15708

栏目编辑:张 腾